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Within the framework of effective Lagrangians we calculate the free energy density for an O�N� antiferro-
magnet in 2+1 dimensions up to three-loop order in the perturbative expansion and derive the low-temperature
series for various thermodynamic quantities. In particular, we show that the magnon-magnon interaction in the
O�3� antiferromagnet in d=2+1—the O�3�-invariant quantum Heisenberg antiferromagnet on a square or a
honeycomb lattice—is very weak and repulsive and manifests itself through a term proportional to five powers
of the temperature in the free energy density. Remarkably, the corresponding coefficient is fully determined by
the leading-order effective Lagrangian Lef f

2 and does not involve any higher-order effective constants from Lef f
4

related to the anisotropies of the lattice—the symmetries are thus very restrictive in d=2+1. We also compare
our results that apply to O�N� antiferromagnets in 2+1 dimensions with those for O�N� antiferromagnets in
3+1 dimensions. The present work demonstrates the efficiency of the fully systematic effective Lagrangian
method in the condensed-matter domain, which clearly proves to be superior to spin-wave theory. We would
like to emphasize that the structure of the low-temperature series derived in the present work is model
independent and universal as it only relies on symmetry considerations.
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I. INTRODUCTION

With the present paper we would like to further promote
the effective Lagrangian method in the condensed-matter
domain—in particular, we would like to demonstrate its ef-
ficiency in describing the thermodynamic properties of sys-
tems exhibiting collective magnetic behavior. While the low-
energy properties of antiferromagnets in dimension d=3+1
have previously been investigated within the effective La-
grangian framework,1–4 in the present study we focus our
attention on antiferromagnets in dimension d=2+1. A thor-
ough analysis of these condensed-matter systems, using
effective-field theory methods, was performed in Refs. 1 and
5–8. However, in the present paper, we go one step further in
the perturbative expansion, taking into account contributions
to the free energy density up to three-loop order. The im-
provement by going from two- to three-loop order, as we will
see, is that the interaction among the spin-wave degrees of
freedom only starts manifesting itself at the three-loop level.
Our new result that the magnon-magnon interaction in the
O�3�-invariant quantum Heisenberg antiferromagnet on a
square or a honeycomb lattice is very weak and repulsive and
manifests itself through a term proportional to five powers of
the temperature in the free energy density, is a three-loop
effect.

Our calculation applies to any system with a spontane-
ously broken internal symmetry O�N�→O�N−1�, provided
that the corresponding leading-order effective Lagrangian
can be brought to a Lorentz-invariant form. This system will
be referred to as O�N� antiferromagnet. Throughout the pa-
per, when talking about dimension, we always refer to the
space-time dimension d=ds+1, where ds is the spatial di-
mension.

The attentive reader may particularly wonder why the
quantum Heisenberg antiferromagnet,

H = − J�
n.n.

S�m · S�n, J = const, �1.1�

falls into the class of O�3� antiferromagnets, i.e., represents a
system described by a Lorentz-invariant leading-order effec-
tive Lagrangian. After all, the lattice structure of a solid
singles out preferred directions, such that the effective La-
grangian in general is not even invariant under space rota-
tions. In the case of a cubic lattice, however, the anisotropy
only shows up at higher orders of the derivative
expansion8—the discrete symmetries of the three-
dimensional cubic crystal thus imply space rotation symme-
try at leading order in the effective expansion. The same is
true for an antiferromagnet defined on a square or a honey-
comb lattice, which represents the system considered in this
paper. Hence, the leading-order effective Lagrangian describ-
ing the quantum Heisenberg antiferromagnet on a cubic
�d=3+1� or square/honeycomb �d=2+1� lattice is
invariant under space rotations and can be brought to a
�pseudo-�Lorentz-invariant form:2 antiferromagnetic spin-
wave excitations exhibit relativistic kinematics with the ve-
locity of light replaced by the spin-wave velocity. As we will
explain in detail later on, the spatial anisotropies which in-
deed start manifesting themselves at next-to-leading order in
the effective Lagrangian, will not affect at all the main result
of the present paper. Hence, a Lorentz-invariant framework,
even at next-to-leading order of the derivative expansion, is
perfectly justified in our calculation.

Goldstone’s theorem, which represents the basis of the
systematic effective Lagrangian method, states that, if the
symmetry G=O�N� of the Lagrangian is spontaneously bro-
ken to H=O�N−1�, we must have N−1 Goldstone bosons in
the broken phase �N�2�. For N=3, these low-energy de-
grees of freedom are identified with the two spin-wave
excitations—or the two independent magnon particles—in
the spectrum of the O�3� antiferromagnet.
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If the perturbations, which explicitly break the internal
rotation symmetry O�N� of the Lagrangian, are small, the
corresponding Goldstone excitations remain light and domi-
nate the low-energy behavior of the system. The effective
Lagrangian method thus also applies to antiferromagnets in
weak external fields. Goldstone’s theorem guarantees that the
Goldstone particles interact only weakly at low energies such
that a systematic perturbative expansion in the momenta and
the external fields can be performed. In the present work we
perturbatively evaluate the partition function in a power se-
ries of the temperature, in order to obtain low-temperature
theorems for various quantities of physical interest.

We would like to emphasize that, from the effective La-
grangian perspective, the analysis of the low-energy proper-
ties of the system is approached from a unified and model-
independent point of view, based on the spontaneously
broken symmetry of the system. The method applies to any
system where the Goldstone bosons are the only excitations
without energy gap. The essential point is that the properties
of these low-energy degrees of freedom and their mutual
interaction are strongly constrained by the symmetries inher-
ent in the underlying theory, such as the Heisenberg
Hamiltonian—the specific nature of the underlying theory or
model, however, is not important. For general pedagogic in-
troductions to the effective Lagrangian technique see Ref. 9.
Brief outlines of the method may be found in Ref. 10. For
specific applications to condensed-matter systems the reader
may consult Refs. 3, 4, 8, and 11–16.

Although our analysis is general, referring to any system
which exhibits a spontaneously broken symmetry
O�N�→O�N−1� and a Lorentz-invariant leading-order effec-
tive Lagrangian, our interest will primarily be devoted to the
special case N=3, which describes the O�3� Heisenberg an-
tiferromagnet in d=2+1 defined on a square or a honeycomb
lattice. Here the internal O�3� spin symmetry of the isotropic
Heisenberg model is spontaneously broken by the ground
state which displays a nonzero staggered magnetization. This
system has been widely studied in condensed-matter physics
and it will be instructive to compare our results with the
findings derived within the microscopic Heisenberg model.
As we will see, the effective-field theory approach is by far
more powerful than spin-wave theory.

Apart from our specific application concerning the parti-
tion function of the O�3� antiferromagnet in d=2+1 up to
three-loop accuracy, we would like to point out that the
effective-field theory approach to this condensed-matter sys-
tem has also proven to be very efficient in other applications:
In particular, in a recent publication on the constraint effec-
tive potential of the staggered magnetization of the O�3�
antiferromagnet,15 the quantitative correctness of the magnon
effective-field theory has been demonstrated in great detail at
per mille level accuracy by comparison with Monte Carlo
simulations of the quantum Heisenberg model using the very
efficient loop-cluster algorithm. At this accuracy, three-loop
effects clearly start manifesting themselves as there are small
discrepancies between the Monte Carlo data and the two-
loop predictions of the effective-field theory. Indeed, it
would be interesting to extend the finite-volume effective-
field theory formulas for the constraint effective potential to
three loops and to confirm the correctness of the effective-

field theory approach on an even higher level of accuracy.
While this finite-volume calculation may be performed in a
future study, in the present work we focus on finite tempera-
ture.

The paper is organized as follows. For the sake of self-
consistency, in Sec. II, we give a brief outline of the effective
Lagrangian method at finite temperature. In Sec. III we
present the evaluation of the partition function up to three-
loop order in the perturbative expansion. The issue of renor-
malization is then discussed in Sec. IV. Section V contains
our main results, i.e., the low-temperature series for the free
energy density and other thermodynamic quantities up to
three-loop order. In Sec. VI we justify why it is legitimate to
use a �pseudo-�Lorentz-invariant framework in our calcula-
tion. We then compare in Sec. VII our results which apply to
O�3� antiferromagnets in three dimensions with those for
O�3� antiferromagnets in four dimensions. Finally, Sec. VIII
contains our conclusions while some technical details con-
cerning the renormalization and the evaluation of a specific
three-loop graph are relegated to three Appendices.

II. EFFECTIVE LAGRANGIAN METHOD AT FINITE
TEMPERATURE

In a Lorentz-invariant framework the construction of ef-
fective Lagrangians is straightforward:17 one writes down the
most general expression consistent with Lorentz symmetry
and the internal, spontaneously broken symmetry G
of the underlying model in terms of Goldstone fields
Ua�x� , a=1, . . . ,dim�G�-dim�H�—the effective Lagrangian
then consists of a string of terms involving an increasing
number of derivatives or, equivalently, amounts to an expan-
sion in powers of the momentum. Furthermore, the effective
Lagrangian method allows to systematically take into ac-
count interactions which explicitly break the symmetry G of
the underlying model, provided that they can be treated as
perturbations.

In the particular case we are considering, the symmetry
G=O�N� is explicitly broken by an external field. It is con-
venient to collect the �N−1� Goldstone fields Ua in a
N-dimensional vector Ui= �U0 ,Ua� of unit length,

Ui�x�Ui�x� = 1, �2.1�

and to take the constant external field along the zeroth axis,
Hi= �H ,0 , . . . ,0�. The Euclidean form of the effective La-
grangian up to and including order p4 then reads,1

Lef f = Lef f
2 + Lef f

4 ,

Lef f
2 =

1

2
F2��Ui��Ui − �sH

iUi,

Lef f
4 = − e1���Ui��Ui�2 − e2���Ui��Ui�2 + k1

�s

F2 �HiUi�

����Uk��Uk� − k2
�s

2

F4 �HiUi�2 − k3
�s

2

F4 HiHi. �2.2�

In the momentum power counting scheme, the field U�x�
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counts as a quantity of order 1. Derivatives correspond to
one power of the momentum, ��� p, whereas the external
field H counts as a term of order p2. Hence, at leading order
��p2� we have two coupling constants, F and �s, while at
next-to-leading order ��p4� already five constants, e1, e2, k1,
k2, and k3, show up. Note that these couplings are not fixed
by symmetry—they parameterize the physics of the underly-
ing theory and have to be determined either experimentally
or in a numerical simulation. Using magnetic terminology,
the square of the effective coupling constant F is the spin
stiffness, while for the O�3� antiferromagnet the quantities �s
and Hi represent the staggered magnetization and the stag-
gered external field, respectively.

The effective Lagrangian method provides us with a si-
multaneous expansion of physical quantities in powers of the
momenta and of the external field. The essential point is that,
to a given order in the low-energy expansion, only a finite
number of coupling constants and only a finite number of
graphs contribute. The leading terms stem from tree graphs,
whereas loop graphs only manifest themselves at higher or-
ders in the derivative expansion.18

A crucial difference with respect to the effective analysis
in four space-time dimensions concerns the suppression of
loops in Feynman graphs: while loops are suppressed by two
momentum powers in four space-time dimensions, in three
space-time dimensions loop corrections are suppressed by
only one power of momentum.19 As a consequence, the num-
ber of Feynman graphs that contribute to the perturbative
expansion of the partition function up to a given order pn,
will depend on the space-time dimension. As we will see in
the next section, there are fewer graphs in three dimensions
that contribute up to three-loop order.

The effective Lagrangian technique can readily be ex-
tended to finite temperature. For a review of the effective
Lagrangian method at nonzero temperature, see Ref. 20. For
a general review of field theory at finite temperature, see Ref.
21. In the partition function, contributions of massive par-
ticles are suppressed exponentially, such that the Goldstone
bosons dominate the properties of the system at low tempera-
tures. In the power counting rules, the role of the external
momenta is taken over by the temperature, which is treated
as a small quantity of order p. The interaction among the
Goldstone degrees of freedom in three dimensions generates
corrections of order p /F�T /F, while in four dimensions, the
corrections are of order p2 /F2�T2 /F2.

In the effective Lagrangian framework at finite tempera-
ture, the partition function is represented as a Euclidean
functional integral,20,21

Tr�exp�− H/T�� =� �dU�exp�− �
T

d4xLef f� . �2.3�

The integration is performed over all field configurations
which are periodic in the Euclidean time direction,
U�x� ,x4+��=U�x� ,x4� with �	1 /T. The low-temperature ex-
pansion of the partition function is obtained by considering
the fluctuations of the field U around the ground state
V= �1,0 , . . . ,0�, i.e., by expanding U0 in powers of
Ua, U0=
1−UaUa. The leading contribution �order p2�

contains a term quadratic in Ua which describes free
�pseudo-�Goldstone bosons of mass

M2 = �sH/F2. �2.4�

The remainder of the effective Lagrangian is treated as a
perturbation. Evaluating the Gaussian integrals in the stan-
dard manner, one arrives at a set of Feynman rules which
differ from the conventional rules of the effective Lagrangian
method only in one respect: the periodicity condition im-
posed on the Goldstone field modifies the propagator. At fi-
nite temperature, the propagator is given by

G�x� = �
n=−�

�

	�x�,x4 + n�� , �2.5�

where 	�x� is the Euclidean propagator at zero temperature.
We restrict ourselves to the infinite-volume limit and evalu-
ate the free energy density z, defined by

z = − T lim
L→�

L−3 ln�Tr exp�− H/T�� . �2.6�

To evaluate the graphs of the effective theory, it is conve-
nient to use dimensional regularization, since the symmetries
of the theory are preserved within this scheme. The zero-
temperature propagator then reads

	�x� = �2
�−d� ddpeipx�M2 + p2�−1

= �
0

�

d��4
��−d/2e−�M2−x2/4�. �2.7�

III. FEYNMAN GRAPHS

Our aim is to evaluate the partition function of an O�N�
antiferromagnet in dimension d=2+1 up to three-loop
order—the relevant Feynman graphs are shown in Fig. 1. At
leading order �order p2�, we have a tree graph involving Lef f

2 .
The next order is p3, where we have a one-loop graph. Re-
member that in three dimensions every loop leads to a sup-
pression of one momentum power only. At order p4 the next-

3 4a 5 d4 b2

4 4

5c5a 5 b

FIG. 1. Feynman graphs related to the low-temperature expan-
sion of the partition function for an O�N� antiferromagnet up to
three-loop order in dimension d=2+1. The numbers attached to the
vertices refer to the piece of the effective Lagrangian they come
from. Vertices associated with the leading term Lef f

2 are denoted by
a dot. Note that loops are suppressed by one momentum power in
d=2+1.
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to-leading order Lagrangian Lef f
4 contributes to a tree graph

while the leading Lagrangian Lef f
2 manifests itself in the form

of a two-loop graph. The situation is more involved at order
p5, where we have three three-loop graphs with insertions
from Lef f

2 , as well as a one-loop graph involving Lef f
4 . Note

that higher-order pieces of the effective Lagrangian, starting
with Lef f

6 , are not relevant for the evaluation of the partition
function in d=2+1 at the three-loop level.

In order to compare our three-loop calculation in 2+1
dimensions with the one referring to the evaluation of the
partition function for an O�N� antiferromagnet in 3+1 di-
mensions, we have displayed the relevant graphs for the lat-
ter case in Fig. 2. Note that loops are now suppressed by two
momentum powers, which leads to 14 diagrams up to the
three-loop level, whereas in three dimensions we only have
eight diagrams. As we will see later on, the different loop
counting and thus different organization of Feynman graphs
reflects itself also in the renormalization of these graphs
which turns out to be less involved in three dimensions.

Let us now consider the case d=2+1 and address the
contributions from the relevant Feynman graphs of Fig. 1
individually. At order p2, the tree graph involving the
leading-order effective Lagrangian leads to a temperature-
independent contribution,

z2 = − F2M2. �3.1�

At order p3, the one-loop graph involving Lef f
2 , which repre-

sents the free Bose gas term, is given by

z3 = −
1

2
�N − 1��4
�−3/2��−

3

2
�M3 −

1

2
�N − 1�g0�M,T� .

�3.2�

The function g0�M ,T� is part of a set of kinematical func-
tions g0�M ,T�, g1�M ,T�, and g2�M ,T� which are associated

with the d-dimensional noninteracting Bose gas and are de-
fined by

gr�M,T� = 2�
0

� d�

�4
��d/2�r−1

�exp�− �M2��
n=1

�

exp�− n2/4�T2� . �3.3�

There are two graphs at order p4. The tree graph 4a involves
two coupling constants from the next-to-leading order La-
grangian,

z4a = − �k2 + k3�M4, �3.4�

while the two-loop graph 4b leads to a temperature-
dependent contribution

z4b =
1

8
�N − 1��N − 3�

M2

F2 �G1�2. �3.5�

The expression G1 denotes the value of the thermal propaga-
tor at the origin

G1 	 G�x��x=0. �3.6�

The situation is more complicated at order p5, where we have
four graphs: The three-loop graphs 5a–5c, involving the
leading-order effective Lagrangian Lef f

2 , as well as a one-
loop graph with a vertex from the next-to-leading order La-
grangian Lef f

4 .
Graph 5a factorizes into a term which only involves the

thermal propagator at the origin,

z5a =
1

16
�N + 1��N − 1��N − 5�

M2

F4 �G1�3. �3.7�

Likewise, graph 5b exclusively contains propagators or de-
rivatives thereof evaluated at the origin,

z5b = −
1

4
�N − 1��N − 3�

M2

F4 �G1�3

−
1

16
�N − 1��N − 3�2 M4

F4 �G1�2G2. �3.8�

The quantity G2 corresponds to an integral over the torus
T=Rds �S1 with circle S1 defined by −� /2x4� /2, and
reads

G2 = �
T

ddx�G�x�2. �3.9�

This integral can be expressed in terms of the derivative of
the propagator at the origin with respect to the mass,

G2 = −
dG1

dM2 . �3.10�

Graph 5c leads to integrals over products of four propaga-
tors. Integrating by parts, they can be brought to the form

4A 4B 6B6A 6C2

8C 8D8A 8B

8E 8F 8G 8H

44 4

4 4

4

6

6 8

FIG. 2. Feynman graphs related to the low-temperature expan-
sion of the partition function for an O�N� antiferromagnet up to
three-loop order in dimension d=3+1. The numbers attached to the
vertices refer to the piece of the effective Lagrangian they come
from. Vertices associated with the leading term Lef f

2 are denoted by
a dot. Note that loops are suppressed by two momentum powers in
d=3+1. Note also that we have used capital letters A,B, . . . ,H in
the definition of the diagrams, in order to distinguish them from the
diagrams in d=2+1 displayed in Fig. 1, where we have used low-
ercase letters.
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z5c =
1

48
�N − 1��N − 3�

M4

F4 J1 −
1

4
�N − 1��N − 2�

1

F4J2

+
1

6
N�N − 1�

M2

F4 �G1�3, �3.11�

where the functions J1 and J2 are given by

J1 = �
T

ddx�G�x�4,

J2 = �
T

ddx���G�x���G�x�2. �3.12�

Finally, the one-loop graph 5d with an insertion from Lef f
4

yields

z5d = �N − 1��k2 − k1�
M4

F2 G1. �3.13�

Collecting all the pieces, we obtain the following expression
for the free energy density of an O�N� antiferromagnet in
dimension d=2+1 up to and including three loops,

z = − F2M2 −
1

2
�N − 1��4
�−3/2��−

3

2
�M3

−
1

2
�N − 1�g0�M,T� − �k2 + k3�M4

+
1

8
�N − 1��N − 3�

M2

F2 �G1�2 +
1

48
�N − 1��N − 3�

��3N − 7�
M2

F4 �G1�3 −
1

16
�N − 1��N − 3�2 M4

F4 �G1�2G2

+
1

48
�N − 1��N − 3�

M4

F4 J1 −
1

4
�N − 1��N − 2�

1

F4J2

+ �N − 1��k2 − k1�
M4

F2 G1 + O�p6� . �3.14�

Note that the quantities above involve the bare mass M of the
�pseudo-�Goldstone bosons given in Eq. �2.4�. The thermo-
dynamics of the antiferromagnet is contained in the functions
g0, G1, G2, J1, and J2 which depend in a nontrivial manner
on the ratio M /T. In the following section, we will take care
of the singularities contained in the above expression and
derive the low-temperature expansion for the free energy
density.

IV. DIVERGENCES AT d=2+1 AND RENORMALIZATION

In order to analyze the divergences in the limit d→3, we
split the thermal propagator into two pieces,

G�x� = 	�x� + Ḡ�x� , �4.1�

where 	�x� represents the propagator at zero temperature. At
the origin, we have

G1 = 2M2� + g1�M,T� ,

G2 = �2 − d�� + g2�M,T� . �4.2�

The temperature-dependent quantities gr�M ,T�, defined in
Eq. �3.3�, are smooth functions in the limit d→3. The
temperature-independent contributions involve the parameter
�,

� =
1

2
�4
�−d/2��1 −

d

2
�Md−4. �4.3�

Remarkably, � is finite in the limit d→3,

� = −
1

8
M
. �4.4�

On the other hand, in the limit d→4 the parameter � con-
tains a pole due to the singular behavior of the gamma func-
tion. Accordingly, logarithmic divergences in the ultraviolet
show up in four space-time dimensions, such that the next-
to-leading order effective constants will undergo a logarith-
mic renormalization in d=3+1. For the moment, however,
we focus on the case d=2+1.

In order to remove the singularities in the remaining inte-
grals J1 and J2, as we show in Appendix A, it suffices to
subtract counterterms of the form c1+c2g1�M ,T� and
c3+c4g1�M ,T�, respectively,

J̄1 = J1 − c1 − c2g1�M,T� ,

J̄2 = J2 − c3 − c4g1�M,T� , �4.5�

where the constants ci are singular functions of the dimen-
sion d. While the quantities c1 and c3 renormalize the
vacuum energy, c2 and c4 renormalize the mass M �see be-
low�.

We now insert the decompositions, Eqs. �4.2� and �4.5�,
into the free energy density, Eq. �3.14�, and discuss the vari-
ous pieces therein. All contributions which are independent
of the temperature,

z0 = − F2M2 −
1

12

�N − 1�M3 − �k2 + k3�M4 +

1

128
2 �N − 1�

��N − 3�
M4

F2 −
1

6144
3 �N − 1��N − 3��9N − 23�
M5

F4

+
1

48
�N − 1��N − 3�

M4

F4 c1 −
1

4
�N − 1��N − 2�

1

F4c3

−
1

4

�N − 1��k2 − k1�

M5

F2 + O�p6� , �4.6�

merely renormalize the vacuum energy.
Next, we consider all terms in the free energy density, Eq.

�3.14�, which are linear in the kinematical functions
gr�M ,T�. In Appendix B we show that these contributions
can be merged into a single term proportional to g0�M
 ,T�
by renormalizing the mass, M→M
, according to
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M

2 = M2 + �N − 3��

M4

F2 + �2�k2 − k1� +
b1

F2 +
b2�2M2

F2 �M4

F2

+ O�M5� . �4.7�

The quantity b1 is related to the singularities contained in the
coefficients c2 and c4. We thus see that the divergences in b1,
originating from the three-loop graph 5c, are absorbed into
the combination k2−k1 �stemming from the one-loop graph
5d� of next-to-leading order effective constants. After mass
renormalization, the only surviving term linear in the kine-
matical function is the contribution from the free energy den-
sity of noninteracting magnons given by

−
1

2
�N − 1�g0�M
,T� , �4.8�

which now depends on the renormalized mass M
.
Finally we have to take care of the terms quadratic and

cubic in the functions gr�M ,T�, which is also done in Appen-
dix B. We are then left with the following expression for the
free energy density of an O�N� antiferromagnet in three di-
mensions,

z = z0 −
1

2
�N − 1�g0 +

1

8
�N − 1��N − 3�

M

2

F2 �g1�2

−
1

128

�N − 1��N − 3��5N − 11�

M

3

F4 �g1�2

+
1

48
�N − 1��N − 3��3N − 7�

M

2

F4 �g1�3

−
1

16
�N − 1��N − 3�2 M


4

F4 �g1�2g2 +
Q

F4 + O�p6� ,

�4.9�

where we have defined the function Q�M
 ,T� by

Q 	
1

48
�N − 1��N − 3�M


4 J̄1 −
1

4
�N − 1��N − 2�J̄2.

�4.10�

Expression �4.9� for the free energy density is free of diver-
gences and only involves the physical mass M
. In particu-
lar, the kinematical functions are defined as gr=gr�M
 ,T�.

For dimensional reasons, the thermodynamic functions in
Eq. �4.9� are of the form Tpf���, where � is the dimensionless
ratio

� =
T

M


. �4.11�

Explicitly, in d=2+1 they are given by

g0 = T3h0���, g1 = Th1���, g2 =
1

T
h2��� ,

Q = T5q��� , �4.12�

such that the free energy density can be written as

z = z0 −
1

2
�N − 1�h0���T3 +

1

8
�N − 1��N − 3�

1

F2�2h1���2T4

−
1

128

�N − 1��N − 3��5N − 11�

1

F4�3h1���2T5

+
1

48
�N − 1��N − 3��3N − 7�

1

F4�2h1���3T5

−
1

16
�N − 1��N − 3�2 1

F4�4h1���2h2���T5 +
1

F4q���T5

+ O�T6� . �4.13�

This expression for the free energy density of an O�N� anti-
ferromagnet in 2+1 dimensions represents the basic result of
our paper. The ratio �=T /M
 can take any value, as long as
the quantities T and M
 themselves are small compared to
the intrinsic scale � of the theory which, in the case of the
O�3� antiferromagnet, may be identified with the exchange
integral J of the Heisenberg model �1.1�.

Remarkably, for N=3—the quantum Heisenberg antifer-
romagnet on a square lattice—most of the terms drop out and
we are left with the following simple expression for the free
energy density of the O�3� antiferromagnet in d=2+1,

z = z0 − h0���T3 +
1

F4q���T5 + O�T6� �N = 3� .

�4.14�

While the term cubic in the temperature corresponds to the
free Bose gas, the term proportional to five powers of the
temperature represents the leading contribution due to the
spin-wave interaction. Note that for this special case �N=3�,
the function q��� defined in Eq. �4.12� only involves the

contribution proportional to J̄2.

V. LOW-TEMPERATURE SERIES FOR THE O(3)
ANTIFERROMAGNET IN d=2+1

With the representation, Eq. �4.14�, for the free energy
density of the O�3� antiferromagnet in 2+1 dimensions, we
are now able to discuss various thermodynamic quantities for
this system. We are particularly interested in the limit
T�M
 which we implement by holding T fixed and sending
M
 �or, equivalently, the external field H� to zero. Since we
keep the fixed T small compared to the intrinsic scale � of
the underlying theory, we do not leave the domain of validity
of the low-temperature expansion.

Because the system is homogeneous, the pressure is given
by the temperature-dependent part of the free energy density,

P = z0 − z = h0���T3 −
1

F4q���T5 + O�T6� . �5.1�

The nontrivial dependence of the quantity P on the ratio
�=T /M
 is contained in the functions h0�M
 ,T� and
q�M
 ,T�, which are defined in Eqs. �3.3� and �4.12�. For the
function h0�M
 ,T� an analytical expression can be provided
in the limit T�M
 �see Appendix C�,
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h0
d=3��� =

1



���3� −

1

4

M

2

T2 +
1

4

M

2

T2 ln
M


2

T2 −
1

6

M

3

T3 +
1

96

M

4

T4

+ O�M


T
�6� . �5.2�

The function q�M
 ,T�, on the other hand, we have evaluated

numerically, using the representation for J̄2 given in
Appendix A—a plot of is provided in Fig. 3. Still, in the
limit T�M
, the function may be parameterized by

q��� = q1 + O�M

2

T2 ln
M


2

T2 �, � =
T

M


, �5.3�

where the coefficient q1 is a real number which takes the
value

q1 = − 0.008779. �5.4�

Making use of the above representations for h0�M
 ,T� and
q�M
 ,T�, in the limit T�M
 the pressure takes the form

P =
��3�



T3�1 −


q1

��3�
T2

F4 + O�T3��
� 0.3826T3�1 + 0.02294

T2

F4 + O�T3�� . �5.5�

The corresponding expressions for the energy density u, for
the entropy density s, and for the heat capacity cV for the
O�3� antiferromagnet in 2+1 dimensions, are readily worked
out from the thermodynamic relations

s =
�P

�T
, u = Ts − P, cV =

�u

�T
= T

�s

�T
�5.6�

with the result

u =
2��3�



T3�1 −

2
q1

��3�
T2

F4 + O�T3��
� 0.7653T3�1 + 0.04589

T2

F4 + O�T3�� ,

s =
3��3�



T2�1 −

5
q1

3��3�
T2

F4 + O�T3��
� 1.1479T2�1 + 0.03824

T2

F4 + O�T3�� ,

cV =
6��3�



T2�1 −

10
q1

3��3�
T2

F4 + O�T3��
� 2.2958T2�1 + 0.07648

T2

F4 + O�T3�� . �5.7�

The respective first terms in the above series represent the
free Bose gas contribution which originates from a one-loop
graph. The effective interaction among the Goldstone bosons
only manifests itself through a term of order T5 in the pres-
sure related to a three-loop graph. Interestingly, the coeffi-
cient q1 is negative, such that the magnon-magnon interac-
tion in the O�3� antiferromagnet in d=2+1 is repulsive at
low temperatures. It is remarkable that the coefficient of the
interaction term in these series is fully determined by the
symmetries inherent in the leading-order effective Lagrang-
ian, and does not involve any next-to-leading order coupling
constants from Lef f

4 , reflecting the anisotropies of the square
lattice or the Lorentz-noninvariant nature of the quantum
Heisenberg antiferromagnet defined on a square or a honey-
comb lattice—the symmetry is thus very restrictive in
d=2+1. Note that there is no interaction term of order T4 in
the pressure: the two-loop contribution z4b is proportional to
N−3 and thus vanishes for the O�3� antiferromagnet, irre-
spective of the actual value of the ratio �=T /M
.

The fact that an interaction term proportional to four pow-
ers of the temperature does not show up in the temperature
expansion for the pressure of the O�3� antiferromagnet in the
limit T�M
 was already pointed out in Ref. 8: this was an
effective Lagrangian calculation that operated on the two-
loop level. We are not aware of any microscopic calculation
that aimed at this accuracy. Moreover, our result that the
leading contribution of the magnon-magnon interaction in
the pressure is repulsive and of order T5 requires a three-loop
calculation on the effective level, performed in the present
study—it is probably fair to say that this accuracy is beyond
the reach of any realistic microscopic calculation based on
spin-wave theory.

In fact, as pointed out in Ref. 8, there were inconsisten-
cies between the results obtained by spin-wave theory,
Schwinger boson mean-field theory and Monte Carlo simu-
lations, already with respect to the very leading term ��T3�
in the temperature expansion of the energy density.23–25 The
error was later attributed to some numerical problems in
solving the equations arising in Schwinger boson mean-field
theory. The systematic effective Lagrangian method, which
approaches the problem from a unified and model-

0 0.2 0.4 0.6 0.8 1
σ

-0.008

-0.006

-0.004

-0.002

0

q(
σ)

FIG. 3. The function q��� for N=3, where � is the dimension-
less parameter �=M
 /2
T=1 /2
�, introduced in Ref. 22.
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independent perspective based on the symmetries of the un-
derlying theory, thus clearly proves to be superior to these
conventional condensed-matter techniques.

As demonstrated in a recent publication on the constraint
effective potential of the staggered magnetization of the O�3�
antiferromagnet,15 three-loop effects clearly start manifesting
themselves, as there are small discrepancies between the
very precise Monte Carlo data and the two-loop predictions
of the effective-field theory. Indeed, it would be interesting
to extend the finite-volume effective-field theory formulas
for the constraint effective potential to three loops, in order
to confirm the correctness of the effective-field theory ap-
proach on an even higher level of accuracy and to extract the
numerical values of some combinations of effective next-to-
leading order coupling constants. Although nontrivial, this
would certainly be feasible within the framework of the sys-
tematic magnon effective-field theory.

We now make an important comment on the range of
validity of the above low-temperature series. After all, we are
considering the limit T�M
, which we have implemented
by holding T fixed and sending M
, or, equivalently, the
external field H, to zero. However, following Mermin and
Wagner,26 there is no spontaneous symmetry breaking at any
finite temperature in the O�3�-invariant Heisenberg model.
Accordingly, there are no massless magnons in the low-
energy spectrum at any finite temperature. Rather, the mag-
nons pick up an exponentially small mass. The argument of
the exponential is proportional to the inverse temperature,

m = �8

e
�2
F2 exp�−

2
F2

T
��1 +

1

2

T

2
F2 + O�T2

F4�� ,

�5.8�

as derived in Refs. 5 and 27. Strictly speaking, it is therefore
not legitimate to switch off the external field H completely
because the above calculation does not take into account the
nonperturbative effect of m. However, the corrections due to
the nonperturbatively generated mass gap are so tiny that
they cannot manifest themselves in the above power series.
In order to verify this claim, we now estimate the order of
magnitude of these corrections.

The above low-temperature series are valid as long as the
correlation length of the Goldstone bosons, �=1 /M
 is much
smaller than the nonperturbatively generated correlation
length �np=1 /m, let us say,

1

1000
=

�

�np
=

8

e

2
F2

T

T

M


exp�−
2
F2

T
� , �5.9�

where we have used Eq. �5.8�. For the Heisenberg antiferro-
magnet in d=2+1, the spin stiffness F2 has been determined
very precisely in Monte Carlo simulations.15,28 In units of the
exchange integral J it takes the value F2=0.1808�4�J, such
that the quantity 2
F2 is on the order of J. Now the ex-
change integral defines a scale in the underlying theory and
for the effective expansion to be consistent, the temperature
has to be small with respect to this scale. Assuming that

T

2
F2 =
1

100
, �5.10�

relation �5.9� then yields the ratio

M


T
� 10−38. �5.11�

Remember that, in the above low-temperature series, we
have implemented the limit T�M
 by holding T fixed and
sending M
 to zero. We thus see that, in principle, we cannot
completely switch off the mass M
—rather, we start running
into trouble as soon as the ratio M
 /T is on the order of the
above value. However, the error introduced is indeed very
small: the leading one-loop contribution in the free energy
density, according to Eqs. �4.9� and �5.2� is

1




1

4

M

2

T2 �1 − ln
M


2

T2 � � 10−75, �5.12�

which is extremely small also with respect to the three-loop
contributions in Eq. �5.5�. We thus confirm that the correc-
tions due to the nonperturbatively generated mass gap are so
tiny that they cannot manifest themselves in the above low-
temperature expansions for the thermodynamic quantities. In
other words, the subtleties raised by the Mermin-Wagner
theorem in d=2+1 are not relevant for our calculation.

While our effective calculation is restricted to the regime
���np, the regime ���np, is perfectly well accessible also
with effective-field theory methods. However, one has to re-
sort to a different type of perturbative expansion. A similar
situation occurs when one considers finite-size effects: when
the Goldstone boson mass is small compared to the inverse
size of the box, a different effective expansion scheme, the
so-called � expansion, applies. Indeed, various problems
within this framework have been investigated in detail.29–32

VI. JUSTIFICATION OF THE LORENTZ-INVARIANT
FRAMEWORK

In this section we would like to explain why it is justified
to use a Lorentz-invariant framework in our calculation. We
have seen that anisotropies induced by a cubic or a square
lattice do not affect the leading-order effective Lagrangian,
such that Lef f

2 can be written in a Lorentz-invariant form,
where the spin-wave velocity takes over the role of the ve-
locity of light: the accidental O�3� space rotation symmetry
at the Lef f

2 level implies �pseudo-�Lorentz invariance. On the
other hand, the anisotropies related to the lattice structure do
show up in the next-to-leading order effective Lagrangian
Lef f

4 . Now, in our three-loop calculation of the partition func-
tion in d=2+1 the only temperature-dependent diagram in-
volving Lef f

4 is the one-loop diagram shown in 5d of Fig. 1,
which is quadratic in the magnon field. Indeed, here we have
a new term due to the lattice anisotropies, also contributing
to the diagram. The respective term,

�
s=1,2

�s�sU
i�s�sU

i, �6.1�

is invariant under the 90° spatial rotation symmetry of the
square lattice but not invariant under continuous O�3� space
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rotations. Interestingly, this term is absent in the case of the
honeycomb lattice, as it is not allowed by the 60° rotation
symmetry.

However, both for the square and the honeycomb lattice
there are additional terms showing up at next-to-leading or-
der: if we consider an O�3� symmetric, i.e., space-rotation
symmetric Lagrangian Lef f

4 —and not a Lorentz-invariant La-
grangian Lef f

4 as we have done so far—there are further
terms like

	Ui	Ui, HiUi�rU
k�rU

k, �6.2�

that also have to be taken into account in Lef f
4 . The essential

observation, however, is that all these Lorentz-noninvariant
extra terms in Eqs. �6.1� and �6.2� contributing to the one-
loop graph 5d merely modify mass renormalization or give
rise to higher-order corrections of the dispersion law,

��k�� = v�k�� + O�k�3� , �6.3�

but cannot manifest themselves in the magnon-magnon inter-
action up to the order p5 considered in the present work.
Although they give rise to an additional term in the free
energy density involving five powers of the temperature, this
is a purely kinematical effect related to the one-loop graph
5d—the leading contribution due to the magnon-magnon in-
teraction, also of order T5, will not be affected. Hence, our
main result regarding the weakness and the repulsive char-
acter of the magnon-magnon interaction in the O�3� antifer-
romagnet in d=2+1 perfectly well applies to the quantum
Heisenberg antiferromagnet defined on a square or a honey-
comb lattice.

Apart from these anisotropies induced by the lattice, we
have to consider a second type of cutoff effects. While the
present three-loop calculation was performed in the infinite-
volume limit, in Ref. 8 the two-loop calculation for the O�N�
antiferromagnet in d=2+1 was presented in a combined ef-
fective expansion at finite temperature as well as finite vol-
ume. The corresponding Fourier sums occurring, e.g., in the
propagator will depend on a finite cutoff. However, the au-
thors showed33 that these momentum sums in the dominant
one-loop graph 3 �see Fig. 1� only start manifesting them-
selves at order p5. The noninteracting part of order p5 is thus
affected by a finite cutoff due to momentum sums, much like
it depends on the other type of cutoff effects induced by the
anisotropies of the square lattice.

The striking point, however, is that the momentum sums
in the relevant three-loop interaction graph manifest them-
selves beyond order p5. Therefore, the effective repulsive
interaction term proportional to T5 does not depend on any
type of cutoff effects.

VII. ANTIFERROMAGNETS IN 2+1 AND 3+1
DIMENSIONS: STRUCTURE OF THE LOW-

TEMPERATURE SERIES

In this section we want to compare the low-temperature
series for antiferromagnets in 2+1 and 3+1 dimensions,
pointing out differences as well as similarities. The effective
Lagrangian method is ideally suited to understand the struc-

ture of these low-temperature series, as it adopts a unified
perspective based on symmetry considerations. We first dis-
cuss the situation for arbitrary N and then consider the spe-
cial case N=3, which describes the O�3�-invariant quantum
Heisenberg antiferromagnet on a square or a honeycomb lat-
tice.

As we have discussed in Sec. III, loops in four dimensions
are suppressed by two momentum powers, whereas in three
dimensions they are suppressed by one power of momentum
only. Consequently, the organization of the loop expansion
for the partition function depends on the space-time dimen-
sion and reflects itself also in the number of Feynman dia-
grams that have to be evaluated. Up to the three-loop level,
we have the 14 diagrams in four dimensions, displayed in
Fig. 2—in three dimensions there are only eight, displayed in
Fig. 1. In particular, in d=2+1, there are no two-loop graphs
involving the next-to-leading order Lagrangian Lef f

4 . More-
over, contributions from Lef f

6 or Lef f
8 are not needed in

d=2+1. One thus notices that the restrictions imposed by
symmetry are extremely strong in d=2+1: up to the three-
loop level, no effective coupling constants from Lef f

6 or Lef f
8

enter the calculation and the couplings in Lef f
4 —as we have

seen—do not affect at all the spin-wave interaction part in
the free energy density.

Another immediate consequence of the dimension-
dependent loop counting is the fact that interactions among
antiferromagnetic magnons in d=2+1 generate corrections
of order p /F�T /F, whereas in d=3+1 these corrections are
of order p2 /F2�T2 /F2. The low-temperature series for the
various thermodynamic quantities are thus expected to pro-
ceed in steps of one power of T in d=2+1 and in steps of T2

in d=3+1—we will come back to this point below.
We now briefly review the relevant results for an O�N�

antiferromagnet in 3+1 dimensions—details of the calcula-
tion can be found in Ref. 4. The formula for the pressure
takes the form

P =
1

2
�N − 1�g0 + 4
a�g1�2 + 
g�b −

j


3F4� + O�p10�

�d = 3 + 1� . �7.1�

The temperature dependence is contained in the kinematical
functions gr�M
 ,T� and in j�M
 ,T�. In the limit H→0 �or,
equivalently, T�M
� we are interested in, analytical expres-
sions for the functions g0, g1, and g can be provided �see Ref.
22 or Appendix C�,

g0�M
,T� =

2

45
T4�1 −

15

4
2

M

2

T2 +
15

2
3

M

3

T3

+

45�� −
3

4
− ln 4
�

16
4

M

4

T4 +
45

32
4

M

4

T4 ln
M


2

T2

+ O�M


T
�6�, �d = 3 + 1� ,
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g1�M
,T� =
1

12
T2�1 −

3




M


T
+ O�M


2

T2 ln
M


T
�� ,

g�M
,T� =
1

675

4T8�1 −

15

4
2

M

2

T2 + O�M


T
�3� , �7.2�

whereas the function j, containing the three-loop contribu-
tion from graph 8C, has to be evaluated numerically,

j = � ln
T

M


+ j1 + j2
M


2

T2 + O�M


T
�3

,

� 	
5�N − 1��N − 2�

48
. �7.3�

The coefficients j1 and j2 in this expansion are real numbers.
Note that the function j��� diverges logarithmically in the
limit H→0. It should be pointed out that the renormalized or
physical mass M
 in d=3+1 is given by

M

2 = M2 + ��N − 3�� + 2�k2 − k1�

M4

F2 + c
M6

F4 + O�M8�

�d = 3 + 1� , �7.4�

which is different from the analogous expression �4.7� in
d=2+1, due to the different loop counting. Without going
into details, we just mention that the quantity �, according to
Eq. �4.3�, is divergent in d=3+1 and that the corresponding
singularity occurring in the two-loop graph 6A �see Fig. 2� is
absorbed into the combination k2−k1 of next-to-leading or-
der coupling constants originating from graph 6B. The ab-
sorbtion of the divergences showing up in the various graphs
of order p8, on the other hand, even involves a coupling
constant of Lef f

6 stemming from graph 8G, which is con-
tained in the quantity c of Eq. �7.4�.

Finally, the constants a and b in the pressure, Eq. �7.1�,
involve the scales Ha and Hb,

a = −
�N − 1��N − 3�

32


�sH

F4 −
�N − 1�3

256
3

��sH�2

F8 ln
H

Ha
,

b = −
5�N − 1��N − 2�

96
3F4 ln
H

Hb
, �7.5�

which are related to coupling constants of Lef f
4 �for details

see the appendix in Ref. 4�. The first term in a, linear in the
external field H, originates from the two-loop graph 6A. The
logarithmic contributions in a and b involving the two scales
Ha and Hb, originate from two-loop graphs with insertions
from Lef f

4 . Note that in d=2+1 these two-loop graphs are
already beyond the next-to-next-to-leading order considered
in the present paper.

Equipped with the above formulas, the low-temperature
expansion of the pressure for an O�N� antiferromagnet in
d=3+1 in the limit H→0 amounts to

P =
1

90

2�N − 1�T4�1 +

N − 2

72

T4

F4 ln
Tp

T
+ O�T6��

�d = 3 + 1� . �7.6�

The first contribution represents the free Bose gas term
which originates from a one-loop graph, whereas the effec-
tive interaction among the Goldstone bosons, remarkably,
only manifests itself through a term of order T8. This contri-
bution contains a logarithm, characteristic of the effective
Lagrangian method in four space-time dimensions, which in-
volves a scale, Tp, related to Hb �see the appendix in Ref. 4�.
The occurrence of a scale involving coupling constants from
Lef f

4 is a consequence of the space-time dimension d=3+1:
in four dimensions the parameter �, defined in Eq. �4.3�,
contains a pole, which can be absorbed into coupling con-
stants of Lef f

4 by a suitable logarithmic renormalization. Note
that the divergences in the function j, Eq. �7.3�, and in the
constant b, Eq. �7.5�, cancel, such that the remaining expres-
sion involving the scale Tp is well defined in the limit
H→0.

At low temperatures, the logarithm ln�Tp /T� in the pres-
sure, Eq. �7.6�, is positive, such that the interaction among
the Goldstone bosons in d=3+1, in the absence of an exter-
nal field H, is repulsive, much like in d=2+1. The symme-
tries in d=3+1, however, are somewhat less restrictive than
in d=2+1, where the interaction term—the last term in Eq.
�4.13� involving the function q���—is unambiguously deter-
mined by the coupling constant F of the leading-order effec-
tive Lagrangian: in d=3+1, next-to-leading order effective
constants from Lef f

4 do show up in the scale Tp. Still, the
symmetry is also rather restrictive in d=3+1, as it unam-
biguously fixes the coefficient in front of the logarithm in
terms of the coupling constant F. Note that there is no term
of order T6 in the above series for the pressure. This is due to
the fact that the respective two-loop contribution �graph 6A,
Fig. 2.� in Eq. �7.1� is proportional to the constant a that
vanishes for a zero external field.

Finally, the energy density u, the entropy density s, and
the heat capacity cV in the limit H→0 are given by

u =
1

30

2�N − 1�T4�1 +

N − 2

216

T4

F4�7 ln
Tp

T
− 1� + O�T6�� ,

s =
2

45

2�N − 1�T3�1 +

N − 2

288

T4

F4�8 ln
Tp

T
− 1� + O�T6��

�d = 3 + 1� ,

cV =
2

15

2�N − 1�T3�1 +

N − 2

864

T4

F4�56 ln
Tp

T
− 15� + O�T6�� .

�7.7�

Note that the limit H→0 can readily be taken in d=3+1
since the Mermin-Wagner theorem does not apply here: there
are no exponentially small nonperturbative corrections in the
above low-temperature series. On general power counting
grounds one would expect the low-temperature series to pro-
ceed in steps of T2 in 3+1 dimensions. However, as for the
pressure before, there are no correction terms proportional to,
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e.g., six powers of the temperature in the internal energy
because the constant a vanishes in the limit H→0.

For the specific case N=3, the above series for the ther-
modynamic quantities take the form

P =
1

45

2T4�1 +

1

72

T4

F4 ln
Tp

T
+ O�T6�� ,

u =
1

15

2T4�1 +

1

216

T4

F4�7 ln
Tp

T
− 1� + O�T6�� ,

s =
4

45

2T3�1 +

1

288

T4

F4�8 ln
Tp

T
− 1� + O�T6�� ,

cV =
4

15

2T3�1 +

1

864

T4

F4�56 ln
Tp

T
− 15� + O�T6��

�d = 3 + 1, N = 3� . �7.8�

These series, valid for the O�3� antiferromagnet in d=3+1,
we now want to compare with the analogous series for
d=2+1.

As we have seen, in three dimensions the parameter � is
finite and therefore no such scale, involving next-to-leading
order coupling constants from Lef f

4 , arises in the low-
temperature series of the thermodynamic quantities. In the
limit H→0, the low-temperature expansions of the thermo-
dynamic quantities for the O�3� antiferromagnet in d=2+1
take the form

P =
��3�



T3�1 −


q1

��3�
T2

F4 + O�T3�� ,

u =
2��3�



T3�1 −

2
q1

��3�
T2

F4 + O�T3�� ,

s =
3��3�



T2�1 −

5
q1

3��3�
T2

F4 + O�T3�� ,

cV =
6��3�



T2�1 −

10
q1

3��3�
T2

F4 + O�T3�� �d = 2 + 1, N = 3� .

�7.9�

Here we would expect the low-temperature series to proceed
in steps of T since every loop in d=2+1 leads to an addi-
tional suppression of one power of the temperature. How-
ever, as it was the case for d=3+1, there are no next-to-
leading order corrections in the above series for d=2+1: a
term proportional to T4 in the pressure is absent. Again, the
corresponding two-loop graph 4b is proportional to M


2 �see
Eq. �3.5��, such that it vanishes in the limit H→0, much like
the constant a in 3+1 dimensions before. In the absence of a
staggered field, the magnon-magnon interaction both in
d=2+1 and d=3+1 thus becomes very weak, as we are
dealing with a next-to-next-to-leading order effect.

For nonzero external field, the low-temperature represen-
tations of the thermodynamic quantities retain their form,
except that the coefficients now become functions of M
 /T.

In the region T�M
 one recovers the results of the theory
for zero external field, whereas in the opposite limit,
T�M
, the gas is dilute and the particles move nonrelativ-
istically. The properties of the system are therefore very sen-
sitive to the value of the ratio M
 /T.

To illustrate this sensitivity, let us consider the pressure
and discuss the general situation for N�2. In the limit
H→0, as we have seen, a two-loop contribution of order p6

in d=3+1—or p4 in d=2+1—does not occur. This is no
longer the case for an approximate symmetry �H�0�: re-
markably, the sign of the corresponding interaction term of
order p6 ��HT4, graph 6A� in d=3+1—or the corresponding
interaction term of order p4 ��HT2, graph 4b� in
d=2+1—turns out to be negative. With respect to the limit
H→0, the sign of this interaction term is thus different: in
the absence of an external field, the first nonleading term
�order p5 in d=2+1, order p8 in d=3+1� is positive and the
interaction among the Goldstone bosons thus repulsive. We
conclude that a weak external field damps this repulsion
among the Goldstone bosons, such that the effective interac-
tion becomes even weaker.

Interestingly, the case N=3 is rather special: since the
two-loop contribution both in d=2+1 and d=3+1 is propor-
tional to �N−3�, the above-mentioned damping of the inter-
action does not occur. Still, the repulsive interaction between
antiferromagnetic magnons in three or four dimensions is
very weak as we are dealing with a next-to-next-to-leading
order effect.

VIII. CONCLUSIONS

Condensed-matter systems exhibiting a spontaneously
broken continuous symmetry may very efficiently be ana-
lyzed with the fully systematic method of effective
Lagrangians. In the present study we have considered O�N�
antiferromagnets in d=2+1 space-time dimensions which
display a spontaneously broken internal rotation symmetry
O�N�→O�N−1� and whose leading-order effective Lagrang-
ian can be brought to �pseudo-�Lorentz-invariant form. The
low-temperature properties of this system are dominated by
the corresponding Goldstone bosons, which for N=3 may be
identified with the two antiferromagnetic magnons or spin-
wave excitations.

We have extended previous results for O�N� antiferro-
magnets in d=2+1 to higher orders in the derivative expan-
sion, evaluating the partition function up to and including
three-loop diagrams. Although the renormalization and the
subsequent numerical evaluation of one particular three-loop
graph turns out to be nontrivial, the calculation is perfectly
feasible within the effective-field theory framework. One of
our main results is that the interaction among magnons in the
O�3�-invariant Heisenberg antiferromagnet, defined on a
square or a honeycomb lattice, is very weak and repulsive at
low temperatures, manifesting itself through a term propor-
tional to five powers of the temperature in the pressure. Re-
markably, the coefficient of this interaction term is fully de-
termined by the leading-order effective Lagrangian Lef f

2 and
does not involve any higher-order effective constants from
Lef f

4 —the symmetry is thus very restrictive in d=2+1. As we
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have argued, additional effective constants in Lef f
4 , taking

into account the Lorentz-noninvariant nature of the system,
merely affect the renormalization of the magnon mass or
yield higher-order corrections to the magnon dispersion law,
but do not affect at all the leading contribution originating
from the magnon-magnon interaction in the pressure.

The free energy density for O�N� antiferromagnets in
d=3+1 up to the three-loop level, on the other hand, does
involve coupling constants from Lef f

4 , which undergo loga-
rithmic renormalization. Accordingly, the effective expan-
sion of thermodynamic quantities now contains a scale re-
lated to these coupling constants in Lef f

4 . In four dimensions,
within the �pseudo-�Lorentz-invariant framework, we thus
need more phenomenological input, i.e., the numerical val-
ues of some next-to-leading order effective coupling con-
stants, in order to fully specify the structure of the magnon-
magnon interaction in the low-temperature series up to the
three-loop level. Still, the symmetry is also very restrictive
here, as it unambiguously fixes the coefficients in the expan-
sion of the free energy density of O�N� antiferromagnets in
d=3+1 up to order T8, where the logarithm involving the
scale enters.

The low-temperature theorems for the various thermody-
namic quantities of O�N� antiferromagnets in three and four
space-time dimensions are exact up to and including three
loops: independently of the specific underlying model, they
are valid for any system with a spontaneously broken sym-
metry O�N�→O�N−1�, provided that the system can be de-
scribed in a �pseudo-�Lorentz-invariant framework, with the
velocity of light replaced by the spin-wave velocity. In par-
ticular, there are no approximations or idealizations involved
in our main result regarding the weakness and the repulsive
character of the magnon-magnon interaction in the
O�3� antiferromagnet in d=2+1: although we use a
�pseudo-�Lorentz-invariant framework, our calculation is not
just some kind of “academic” exercise, as the lattice
anisotropies, or the Lorentz-noninvariant nature of the sys-
tem in general, cannot manifest themselves in the magnon-
magnon interaction up to the three-loop order of the pertur-
bative expansion, considered in the present paper—hence
our calculation applies, as it stands, to the quantum Heisen-
berg antiferromagnet defined on a square or a honeycomb
lattice.

We would like to emphasize that the order of the calcula-
tion presented here, as we have argued in Sec. V, appears to
be beyond the reach of any realistic microscopic calculation
based on spin-wave theory or other standard condensed-
matter methods, such as Schwinger boson mean-field theory.
The fully systematic effective Lagrangian method thus
clearly proves to be more efficient than the complicated mi-
croscopic analysis. Another virtue of the effective Lagrang-
ian technique is that it addresses the problem from a unified
and model-independent point of view based on
symmetry—at large wavelengths, the microscopic structure
of the system only manifests itself in the numerical values of
a few coupling constants. Therefore the effective Lagrangian
method is ideally suited to understand similarities and differ-
ences in the structure of the low-temperature series for anti-
ferromagnets in three and four dimensions based on symme-
try considerations only.
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APPENDIX A: EVALUATION OF THE CATEYE GRAPH IN
d=2+1

The singularities contained in the integrals J1 and J2,
originating from the cateye graph 5c, may be removed by
subtracting suitable counterterms. Since our main focus is
the O�3� antiferromagnet, here we only discuss the renormal-
ization of the function J2—the renormalization of the quan-
tity J1, which does not contribute to the free energy density
for N=3 according to Eq. �3.14�, will be discussed else-
where.

The singularities contained in J2 may be removed by sub-
tracting the following counterterms,

J̄2 = J2 − c3 − c4g1�M,T� . �A.1�

To establish this result, we use a method, developed in Ref.
22, which at the same time also provides us with a represen-
tation of the renormalized integrals suitable for numerical
evaluation. We first cut out a sphere S around the origin of
radius �S�� /2 and decompose J2 accordingly,

J2 = �
S

ddx���G�x���G�x�2 + �
T\S

ddx���G�x���G�x�2.

�A.2�

In the integral over the complement T \S of the sphere, the
integrand is not singular and the limit d→3 can readily be
taken. In the integral over the sphere, we insert the decom-
position, Eq. �4.1�,

J2 = �
S

ddx����Ḡ��Ḡ2 + 4��Ḡ��Ḡ��Ḡ��	

+ 4��Ḡ��	��Ḡ��	 + 2��Ḡ��Ḡ��	��	

+ 4��Ḡ��	��	��	 + ���	��	2� . �A.3�

In d=2+1 the first four terms are convergent. However, the
last two terms, involving three and four nonthermal propa-
gators, respectively, are divergent.

In order to extract these two singularities showing up in
d=2+1, we follow Ref. 22, where the dimension was
d=3+1. We first disregard derivatives and consider the ex-

pression 4Ḡ	3, which contains three nonthermal propaga-
tors. Since 	�x� is Euclidean invariant, the integral

�
S

ddx4Ḡ	3 �A.4�

only involves the angular average of Ḡ�x�,

f�R� =� dd−1�Ḡ�x�, R = �x� . �A.5�

The differential equation
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�Ḡ = M2Ḡ �A.6�

implies

� d2

dR2 +
d − 1

R

d

dR
− M2� f = 0, R � � . �A.7�

Since f is regular at the origin, the differential equation fixes
it uniquely up to a constant. The function g1 ch�Mx4� obeys

the same differential equation as Ḡ�x� and coincides with it
at the origin. The angular averages of these two quantities
are therefore the same, i.e.,

�
S

ddxḠ	3 = g1�
S

ddxch�Mx4�	3. �A.8�

We split the integral over the sphere into two pieces,

4g1�
S

ddxch�Mx4�	3 = 4g1�
R

ddxch�Mx4�	3

− 4g1�
R\S

ddxch�Mx4�	3,

�A.9�

where the singularity is now contained in the integral over all
Euclidean space in the form of the counterterm

c2 = 4�
R

ddxch�Mx4�	3. �A.10�

The same line of reasoning goes through for the expression

4��Ḡ��	��	��	 in Eq. �A.3�, where one ends up with the
counterterm

c4 = 4�
R

ddx��ch�Mx4���	��	��	 . �A.11�

As far as the last term in Eq. �A.3�, involving four nonther-
mal propagators, is concerned, it suffices to subtract the
temperature-independent integral of ���	�x���	�x�2 over all
Euclidean space,

c3 = �
R

ddx���	��	2, �A.12�

in order to remove the singularity. Collecting the various
pieces, we thus arrive at the following representation for the
renormalized integral in d=2+1,

J̄2 = �
T

d3xT + �
T\S

d3xU − �
R\S

d3x��	��	 · W ,

T = ���Ḡ��Ḡ�2 + 4��Ḡ��Ḡ��Ḡ��	 + 4��Ḡ��	��Ḡ��	

+ 2��Ḡ��Ḡ��	��	 ,

U = 4��Ḡ��	��	��	 + ��	��	��	��	 ,

W = 4g1��ch�Mx4���	 + ��	��	 . �A.13�

This expression involves ordinary, convergent integrals. Ex-

ploiting the fact that Ḡ�x� and 	�x� only depend on r= �x�� and
on t=x4, the integrals occurring in this representation be-
come effectively two dimensional,

d3x = 2
rdrdt . �A.14�

Note that the quantity J̄2 must be independent of the size of
the sphere—this provides us with a welcome numerical con-
sistency check of our calculation.

It is instructive to compare our decomposition of the in-
tegrals, Eq. �A.13�, with the decomposition originally used in
Ref. 22, which in d=2+1 amounts to

J̄2 = �
T\S

d3xŨ + �
S

d3xṼ − �
R\S

d3x��	��	 · W̃ ,

Ũ = ���G��G�2,

Ṽ = ���Ḡ��Ḡ�2 + 4��Ḡ��Ḡ��Ḡ��	 + 2Q����	��	

+ 4Q����	��	 ,

W̃ = w̃ + 4g1��ch�Mx4���	 + ��	��	 �A.15�

with

w̃ =
1

x2��3

2
x4 −

9

2
x2x4

2 + 9x4
4�g0

2 + 12M2x4
4g0g1

+ 2�2M4x4
4 + M4x2x4

2�g1
2� ,

Q�� = ��Ḡ�x���Ḡ�x� − Ḡ��Ḡ��x�x�,

Ḡ�� = −
1

2
���g0 + ��

4 ��
4�3

2
g0 + M2g1� . �A.16�

The main difference between the two decompositions, Eqs.
�A.13� and �A.15�, concerns the terms involving two thermal
propagators, where we have

�
S

d3x�2��Ḡ��Ḡ��	��	 + 4��Ḡ��	��Ḡ��	�

= �
S

d3x�2Q����	��	 + 4Q����	��	�

− �
R\S

d3x��	��	 · w̃ + �
R

d3x�2Ḡ��Ḡ��x�x���	��	

+ 4Ḡ��Ḡ��x�x���	��	� . �A.17�

Now, in four dimensions the integral over the sphere on the
left-hand side contains a logarithmic singularity—this was
the reason why in Ref. 22 the above decomposition was per-
formed: the singularity then occurs again on the right-hand
side in the integral over all Euclidean space. It turns out that,
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in order to renormalize the integral J2 in d=3+1, it is thus
not sufficient to just subtract the two counterterms c3 and c4
in Eq. �A.1�—rather, one has to subtract two more terms,

J̄2 = J2 − c3 − c4g1 +
1

3
�d + 6��d − 2���Ḡ���2

+
2

3
�d − 2��M4�g1�2, �A.18�

in order to remove all singularities in J2.
In three dimensions, as we have seen, the integral over the

sphere on the left-hand side of Eq. �A.17� is not singular.
Likewise the integral over all Euclidean space on the right-
hand side is perfectly well defined, such that there is no need
to introduce the above decomposition, Eq. �A.15�, in three
dimensions in the first place. Still, in order to check that our
entire calculation is consistent, we have verified both analyti-

cally and numerically that the evaluation of the quantity J̄2
via Eqs. �A.13� and �A.15� yields the same result.

We close this section with a comment regarding dimen-
sional regularization and the different structure of the singu-
larities in three and four dimensions, respectively. The essen-
tial point can be seen in the identity, Eq. �A.17�, which
involves two thermal propagators. In four dimensions, as we
have seen, the cateye graph is of order p8 and so is the
singularity occurring in the last term of Eq. �A.17�. Now, in
four dimensions we also have two-loop graphs which are of
the same order p8: graphs 8D and 8E �see Fig. 2� which
involve vertices from the next-to-leading order effective La-
grangian Lef f

4 . Therefore, the singularities in the last term of
Eq. �A.17�—the integral over all Euclidean space—can be
absorbed into a combination of these next-to-leading order
coupling constants.

In three dimensions, on the other hand, these two-loop
graphs are of order p6, i.e., beyond the order p5 considered in
the present work. Loosely speaking, there is no communica-
tion between the cateye graph �order p5� and these two-loop
graphs of order p6 and it so seems that—in three
dimensions—the “singularities” in the last term of Eq.
�A.17� cannot be absorbed, as there are no next-to-leading
order coupling constants available. However, in three dimen-
sions the parameter � arising in the last term of Eq. �A.17� is
finite, such that the bookkeeping of “divergences” in three
dimensions is perfectly consistent.

APPENDIX B: RENORMALIZATION

In this appendix, we would like to derive expression �4.9�
for the free energy density of an O�N� antiferromagnet in
d=2+1. We first show that all the terms in the free energy
density, Eq. �3.14�, that are linear in the kinematical func-
tions gr�M ,T� can be merged into a single such function,
namely, g0, by replacing the bare mass M with the physical
mass M
.

With the decompositions, Eqs. �4.2� and �4.5�, the terms
in the free energy density, Eq. �3.14�, linear in gr�M ,T� read

z�1 = −
1

2
�N − 1�g0�M,T� +

1

2
�N − 1��N − 3�

M4

F2 �g1�M,T�

−
1

4
�N − 1��N − 3�2 M8

F4 �2g2�M,T� + �N − 1��k2

− k1�
M4

F2 g1�M,T� +
1

48
c2�N − 1��N − 3�

M4

F4 g1�M,T�

−
1

4
c4�N − 1��N − 2�

1

F4g1�M,T�

+
1

2
�N − 1��N − 3��2N − 5�

M6

F4 �2g1�M,T� . �B.1�

Now the pressure at low temperatures is of order
exp�−M
 /T� originating from one-particle states—states
containing two or more Goldstone bosons only show up at
order exp�−2M
 /T�. Therefore it is possible to extract the
physical Goldstone boson mass M
 from the behavior of the
pressure at low temperatures,

M
 = − lim
T→0

T ln P . �B.2�

Using the relation

gr+1 = −
dgr

dM2 , �B.3�

this limit amounts to

M

2 = M2 + �N − 3��

M4

F2 + �2�k2 − k1� +
b1

F2 +
b2�2M2

F2 �M4

F2

+ O�M5� , �B.4�

where the coefficients b1 and b2 are given by

b1 =
1

24
�N − 3��2 −

1

2
�N − 2��4,

b2 = �N − 3��2N − 5� . �B.5�

The quantities �2 and �4 are singular functions of the dimen-
sion d and are related to the coefficients c2 and c4—defined
in Eqs. �A.10� and �A.11�—as follows:

c2 = �2M2d−6, c4 = �4M2d−2. �B.6�

Inspecting the curly bracket in formula �B.4� one thus no-
tices that the infinities contained in c2 and c4, which stem
from the three-loop graph 5c, are absorbed into the combi-
nation k2−k1 of next-to-leading order coupling constants,
originating from the one-loop graph 5d. Note that in
d=2+1 the parameter � is finite, such that second term on
the right-hand side of Eq. �B.4�, coming from the two-loop
graph 4b, does not contain any singularities.

One readily verifies that the replacement
g0�M ,T�→g0�M
 ,T� in the first term of Eq. �B.1� cancels all
other terms linear in gr�M ,T�. The free energy density, linear
in the kinematical functions, thus takes the simple form
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−
1

2
�N − 1�g0�M
,T� . �B.7�

We now proceed with the terms in the free energy density
that are quadratic in the kinematical functions gr�M ,T�. They
are

z�2 =
1

8
�N − 1��N − 3�

M2

F2 g1�M,T�2

+
1

16
�N − 1��N − 3��7N − 17�

M4

F4 �g1�M,T�2

−
1

4
�N − 1��N − 3�2 M6

F4 �g1�M,T�g2�M,T� . �B.8�

In the first term we make the replacement
g1�M ,T�→g1�M
 ,T�, which amounts to

g1�M
,T�2 = g1�M,T�2 − �2�N − 3�
M4

F2 � + O�M4��
� g1�M,T�g2�M,T� . �B.9�

One notices that this cancels the third term in Eq. �B.8�. We
are thus left with

1

8
�N − 1��N − 3�

M2

F2 g1�M
,T�2

+
1

16
�N − 1��N − 3��7N − 17�

M

4

F4 �g1�M
,T�2.

�B.10�

Note that in the second term we have also replaced the bare
mass by the physical mass, both in the prefactor and in the
kinematical function: this is legitimate as the difference is
beyond our accuracy. Finally, in the prefactor of the first
term, we also express the bare mass by the physical mass
using relation �B.4�, obtaining the following terms in the free
energy density quadratic in the kinematical functions,

1

8
�N − 1��N − 3�

M

2

F2 g1�M
,T�2

+
1

16
�N − 1��N − 3��5N − 11�

M

4

F4 �g1�M
,T�2.

�B.11�

To end up, we take care of the remaining terms in the free
energy density that are either cubic in the kinematical func-
tions gr�M ,T� or are related to integrals over the torus,

z�3 =
1

48
�N − 1��N − 3��3N − 7�

M2

F4 g1�M,T�3

−
1

16
�N − 1��N − 3�2 M4

F4 g1�M,T�2g2�M,T�

+
1

48
�N − 1��N − 3�

M4

F4 J̄1 −
1

4
�N − 1��N − 2�

1

F4 J̄2.

�B.12�

Again, we replace the bare mass by the physical mass in the
above terms, both in the kinematical functions and in the
prefactors, as the difference is beyond our accuracy. No can-
cellations of terms occur here.

Collecting the various contributions, we arrive at the ex-
pression for the free energy density of an O�N� antiferromag-
net in d=2+1,

z = z0 −
1

2
�N − 1�g0 +

1

8
�N − 1��N − 3�

M

2

F2 �g1�2

−
1

128

�N − 1��N − 3��5N − 11�

M

3

F4 �g1�2

+
1

48
�N − 1��N − 3��3N − 7�

M

2

F4 �g1�3

−
1

16
�N − 1��N − 3�2 M


4

F4 �g1�2g2 +
1

48
�N − 1��N − 3�

M

4

F4 J̄1

−
1

4
�N − 1��N − 2�

1

F4 J̄2 + O�p6� . �B.13�

Note that only the physical mass M
 occurs in the above
formula: in particular, the kinematical functions are
gr=gr�M
 ,T�. Remember that the temperature-independent
contribution z0 is the vacuum energy density given in Eq.
�4.6�.

APPENDIX C: PROPERTIES OF THE KINEMATICAL
FUNCTIONS gr(M ,T)

In this appendix we discuss some properties of the kine-
matical functions gr�M ,T�, defined by

gr�M,T� = 2�
0

� d�

�4
��d/2�r−1 exp�− �M2�

��
n=1

�

exp�− n2/4�T2� . �C.1�

We follow the appendices A and B of Ref. 1 where the analo-
gous kinematical functions for finite volume were consid-
ered. Here we adapt the method described therein to finite
temperature.

We are particularly interested in the expansion of gr�M ,T�
in the limit M→0, where infrared singularities occur. We
introduce the Jacobi theta function,

S�x� = �
n=−�

�

e−
n2x, �C.2�

and express the kinematical function �C.1� by

gr�M,T� =
Td−2r

�4
�r�
0

�

dttr−d/2−1 exp�−
M2t

4
T2� � �S�1/t� − 1� .

�C.3�

The integration is split into two regions, 0 t1 and
1 t��. In the second region we use the identity
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S�x� =
1

x

S�1/x� , �C.4�

change the integration variable t→1 / t, and arrive at the fol-
lowing representation for the kinematical functions gr�M ,T�,

gr�M,T� =
Td−2r

�4
�r �ãr + br−d/2+1/2 − br−d/2 , �C.5�

with

ãr = �
0

1

dttr−d/2−1 exp�−
M2t

4
T2��S�1/t� − 1�

+ �
0

1

dtt−r+d/2−3/2 exp�−
M2

4
T2t
��S�1/t� − 1�

�C.6�

and

bs = �
1

�

dtts−1 exp�−
M2t

4
T2� . �C.7�

The function ãr does not contain infrared singularities and
the expansion in powers of M2 is of the form

ãr = �
n=0

� �−
M2

4
T2�n 1

n!
��̂r+n−d/2 + �̂−r−n+d/2−1/2 , �C.8�

where

�̂p = �
0

1

dttp−1�S�1/t� − 1 . �C.9�

The infrared singularities are contained in the incomplete �
function bs,

bs = � M2

4
T2�−s

��s� − �
n=0

�
1

n!
�−

M2

4
T2�n 1

n + s
. �C.10�

The pole in the function ��s� at s=0,−1,−2, . . . is compen-
sated by a pole occurring in the second piece of bs which is
analytic in M. The two singularities can be merged and one
ends up with a logarithmic contribution. Details can be found
in Ref. 1—here we give the explicit expression for
b−N�N�0�,

b−N =
�− 1�N+1

N!
� M2

4
T2�N�log
M2

4
T2 + � − �
n=1

N
1

n�
+ �

n�N

1

n!
�−

M2

4
T2�n 1

N − n
, �C.11�

where the quantity ��0.577 denotes Euler’s constant. Note
that, in the second sum over n, the value n=N is to be omit-
ted. Moreover, for N=0 the sum in the curly bracket is to be
omitted.

We now consider the kinematical function g0�M ,T� both
in three and four dimensions. According to Eq. �C.5� we
have

g0
d=3�M,T� = T3�ã0 + b−1 − b−3/2 ,

g0
d=4�M,T� = T4�ã0 + b−3/2 − b−2 . �C.12�

Using relation �C.4� and the identity


−z/2��z/2���z� =
1

2
�

0

�

dttz/2−1�S�t� − 1 , �C.13�

one readily shows that the various contributions in Eq.
�C.12� can be merged into a single series in M, involving
Riemann zeta functions,

g0
d=3�M,T� = T3� ��3�



+

1

4


M2

T2 �ln
M2

T2 − 1� −
1

6


M3

T3

+ 2
�
n=2

�
�− 1�n

n!
� M

2
T
�2n

��n − 1���2n − 2�� ,

g0
d=4�M,T� = T4�
2

45
−

1

12

M2

T2 +
1

6


M3

T3 +
�2� −

3

2
�

32
2

M4

T4

+
1

32
2

M4

T4 ln
M2

16
2T2 + 2
3/2�
n=3

�
�− 1�n

n!

�� M

2
T
�2n

��n −
3

2
���2n − 3�� �T � M� .

�C.14�

Explicitly, the first few terms in these series read

g0
d=3�M,T� =

1



T3���3� −

1

4

M2

T2 +
1

4

M2

T2 ln
M2

T2 −
1

6

M3

T3

+
1

96

M4

T4 + O�M

T
�6� ,

g0
d=4�M,T� =


2

45
T4�1 −

15

4
2

M2

T2 +
15

2
3

M3

T3

+

45�� −
3

4
− ln 4
�

16
4

M4

T4 +
45

32
4

M4

T4 ln
M2

T2

+ O�M

T
�6� �T � M� . �C.15�

The expansion for the function g0
d=4�M ,T� coincides with the

expression derived in the appendix of Ref. 22, where a dif-
ferent method was used. The series for the kinematical func-
tions g1�M ,T� and g2�M ,T� can readily be obtained using
the relation

gr+1 = −
dgr

dM2 . �C.16�
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